Titan Saturn System Mission Orbiter Science Scenarios

Presentation at OPFM Instrument Workshop

Presented by Robert Lock

June 3, 2008

Jet Propulsion Laboratory, California Institute of Technology Pasadena CA

Science Scenario Phases

- Cruise Phase 1 Venus, and 2 Earth flybys
 - Opportunities to exercise operations processes and calibrate instruments
- Tour Phase
 - Saturn Orbit Insertion
 - Observe Enceladus and Titan during Flybys
 - 4 Enceladus
 - 15 Titan
 - Relay data rates vary with range to Titan (11 million to a few thousand kilometers)
 - Aerosampling Collect atmospheric data during aeropasses, remote sensing when outside atmosphere
- Orbital Phase (Discussed on the following slides)

Titan Orbit Scenario Analysis

- Modeled spacecraft and instrument performance to find compatible combinations given constraints.
- Designed a 2-year feasible plan that accomplishes science goals using the current spacecraft resources, with margin.
- Other options are available
 - Considered and modeled other campaigns that can serve as science planning tools.

Scenario Modeling

- Scenario Analysis Tool estimates data volumes and power balance for different orbit scenarios
 - Simulation runs in 1 minute steps for one entire orbit
 - All instruments represented as Data Rate, Power states
 - on, standby, off
 - Data rates, data reduction factors
 - On duration represented as a duty cycle defined as percent of orbit period
 - Output
 - Data accumulation in SSR, total data from each instrument
 - Power state, battery state: required to balance energy each orbit
- Campaigns are combinations of instruments to assess feasibility
 - Scenario Analysis Tool can estimate many combinations quickly
 - Scenarios are groups of campaigns that meet science goal sets

Sample TSSM Science Campaigns – Orbit Phase

- 3 types of science campaigns, each designed to manage power and data rate.
 - <u>Atmosphere & ionosphere</u>: identify and measure ions and neutrals globally for various Sun angles. (PMS and MAPP)
 - <u>Surface map</u>: global map in up to 4 colors; global altimetry with better than 10-m accuracy; surface spectroscopy. (HiRIS, TiPRA, MAPP)
 - Atmospheric dynamics and composition: measure temperatures, composition, and winds, globally. (TIRS and SMS)

Maintain each orbit type (campaign) for 16 days (1 Titan revolution)

6-month cycle= eleven periods of 16 days.

Constraints in Scenario Modeling

- Power Total of 110W shared between Telecom and the instruments
 - HiRIS 32W

• SMS 40W

• TiPRA 15W

PMS 25W

• MAPP 16W

- TIRS 15W
- Telecom 83W
- 25 Amp-hour battery must be recharged in each orbit
- Telecom Worst-case data playback rate assumed (50kbps)
- SSR 32Gb capacity will be balanced among campaigns

Sample Orbital Mission Scenario

- Maintain each campaign for 16 days (one Titan revolution)
- 6-month cycle= eleven campaigns of 16 days, each

16-day campaigns (80 orbits)	Type of orbit	Comments
1	Atmosphere/Ionosphere PMS and MAPP	Unloads SSR 26 Gb
2, 4, 6, 8, 10	Surface map (even-numbered 16-day campaigns) HiRIS, TiPRA, MAPP	Loads SSR 20.6 Gb Takes four 16-day campaigns for one color map
3, 5, 7, 9, 11	Atmosphere dynamics & Composition (odd-numbered 16-day campaigns) TIRS, SMS	Unloads SSR 25.8 Gb
Repeat	Three types of orbits in the pattern, above.	

Atmosphere & Ionosphere: PMS and MAPP 100% Duty Cycle

Sample Orbital Mission Scenario – Summary

Campaign	Duty Cycle	Comments
Atmosphere/Ionosphere: (PMS and MAPP)	PMS 100% MAPP 100%	330Mb p/b margin per orbit. Unloads SSR by 26Gb during campaign
Surface map: HiRIS, TiPRA, MAPP	HiRIS 40% TiPRA 100% MAPP 100%	260Mb net data accumulation per orbit. Loads SSR by 20.6Gb during campaign
Atmosphere dynamics & Composition: TIRS, SMS	TIRS 100% SMS 100%	320Mb p/b margin per orbit. Unloads SSR by 25.8Gb during campaign

Other Scenarios were Considered

Campaign	Duty Cycle	Comments
TiPRA, PMS, MAPP	TiPRA 100% PMS 100% MAPP 100%	109Mb p/b margin per orbit. Unloads SSR by 8.8Gb during campaign
PMS, SMS, TIRS, MAPP	PMS 50% TiPRA 75% SMS 50% MAPP 100%	230Mb p/b margin per orbit. Unloads SSR by 18Gb during campaign
HiRIS, TIRS, MAPP	HiRIS 40% TIRS 40% MAPP 100%	250Mb net load per orbit. Loads SSR by 20Gb during campaign

^{*} Not necessarily meant to execute in the order listed.

Scenario Summary

- The first scenario, with 6-month cycles, is an example of a workable 2-year plan, given the current power and data-flow constraints.
- As science requirements are assessed and new needs arise, a variety of other campaigns (instrument combinations) can be modeled for consideration